Book icon with persian name of Pubnito
  • Store
  • Library
  • Your Cart


    Total Items:0

    View Cart

    Pathways to Green Nanomaterials: Plants as Raw Materials, Reducing Agents and Hosts

    Pathways to Green Nanomaterials: Plants as Raw Materials, Reducing Agents and Hosts

    Li Fu

    "Pathways to Green Nanomaterials: Plants as Raw Materials, Reducing Agents and Hosts is a comprehensive guide that explores the fundamental aspects, synthesis methods, and various applications of nanomaterials derived from plants. This book is designed for postgraduate researchers, engineers, and scientists in the fields of materials science, biotechnology, and chemical engineering, as well as other disciplines involved in nanomaterial production and applications. The book delves into different plant-mediated nanomaterials, analyzing their synthesis mechanisms and discussing the regulation and application prospects of plant synthesis. It covers topics such as nanocellulose, biochar materials, plant exosomes, polyphenol nanoparticles, and the phytotoxicity and uptake of nanomaterials by plants. Additionally, it explores the research progress and applications of plant virus nanoparticles in the medical field, including drug delivery, molecular imaging, and vaccine preparation. Readers will be familiarized with the synthetic methods, characterization, and applications of green nanomaterials, paving the way for future studies on plants and their phytochemical constituents. With its comprehensive coverage of plant-derived nanomaterials and their diverse applications, Pathways to Green Nanomaterials: Plants as Raw Materials, Reducing Agents and Hosts serves as a valuable resource for researchers seeking to understand the potential of plants as sustainable sources for nanomaterial production. " "Pathways to Green Nanomaterials: Plants as Raw Materials, Reducing Agents and Hosts is a comprehensive guide that explores the fundamental aspects, synthesis methods, and various applications of nanomaterials derived from plants. This book is designed for postgraduate researchers, engineers, and scientists in the fields of materials science, biotechnology, and chemical engineering, as well as other disciplines involved in nanomaterial production and applications. The book delves into different plant-mediated nanomaterials, analyzing their synthesis mechanisms and discussing the regulation and application prospects of plant synthesis. It covers topics such as nanocellulose, biochar materials, plant exosomes, polyphenol nanoparticles, and the phytotoxicity and uptake of nanomaterials by plants. Additionally, it explores the research progress and applications of plant virus nanoparticles in the medical field, including drug delivery, molecular imaging, and vaccine preparation. Readers will be familiarized with the synthetic methods, characterization, and applications of green nanomaterials, paving the way for future studies on plants and their phytochemical constituents. With its comprehensive coverage of plant-derived nanomaterials and their diverse applications, Pathways to Green Nanomaterials: Plants as Raw Materials, Reducing Agents and Hosts serves as a valuable resource for researchers seeking to understand the potential of plants as sustainable sources for nanomaterial production. "

    Book Format

    Book License

    $ 44.00

    Reviews

    Rating Snapshot

    Select a row below to filter reviews.

    0

    0

    0

    0

    0

    0

    Overall

    Average Customer Ratings

    Review for this Book

    Share your thoughts with other readers

    More Information

    Description of Pathways to Green Nanomaterials: Plants as Raw Materials, Reducing Agents and Hosts

    "Pathways to Green Nanomaterials: Plants as Raw Materials, Reducing Agents and Hosts is a comprehensive guide that explores the fundamental aspects, synthesis methods, and various applications of nano

    Additional Information

    Vendor

    Publish Date

    2023 Aug 14

    Authors
    Li Fu

    ISBN

    9789815136388

    About the authors

    Li Fu
    Li Fu
      Li Fu

      Table of content

      logo

      English

      Powered by PUBNiTO | © 2025 Notion Wave Inc.